(3)判断理由
ア)認定した事実
① 特定不正行為(ねつ造、改ざん)
告発対象論文について、論文の結論にとって都合が良いデータを選択して作成された図があることと、出所不明のデータを付け加えることにより、複数の不正な図(改ざん及びねつ造が行われた図、改ざんが行われた図)が掲載されたことを確認し、特定不正行為(ねつ造、改ざん)が行われたことを認定した。
② 特定不正行為以外の不正行為(不適切なオーサーシップ)
告発対象論文において、論文の作成にほとんど関わっていない者を共著者として記載し、論文を投稿するに当たり、共著者全員に了解を得ないまま手続きを行い、受理されてから連絡するなどの行為を確認し、これは不適切なオーサーシップに当たると認定した。
取り消された博士研究論文:カチオン性リポソームを担体としたmyostatin-siRNA局所導入による骨格筋量制御効果の検討 Effectiveness of cationic liposome-mediated local delivery of myostatin-targeting small interfering RNA in vivo. Dev Growth Differ2014 Apr;56(3):223-32. doi: 10.1111/dgd.12123. Epub 2014 Mar 13. (PubMed)
以下の記事は、上とはまた別の事件です。
学位取り消し
徳島大学では,元大学院学生(徳島大学大学院医科学教育部医学専攻博士課程(平成29年3月23日修了))の学位論文「A significant causal association between C-reactive protein levels and schizophrenia」(甲医第 1318 号・博士(医学))に関して,下記のとおり「学位を授与された者が,その名誉を汚辱する行為をしたとき」と判断し,学位授与の取り消しを決定し,学位記の返還を命じた。(徳島大学 平成30年7月6日)
Retraction: A significant causal association between C-reactive protein levels and schizophrenia (Published: 21 February 2018, Scientific Reports)
A significant causal association between C-reactive protein levels and schizophrenia. Scientific Reports volume 6, Article number: 26105 (2016). Published: 19 May 2016
1 本件対象文書について不開示とした理由について
本件対象文書は「「インターネット上で指摘のあった論文の画像データに係る調査結果について」として調査結果が平成27年7月31日付けで公表されている,研究行動規範委員会の調査に関わる資料の一切。具体的には,調査にかかる会議に提出された資料,会議の議事次第,調査委員が示された資料,会議の議事録,調査報告書とその案,調査対象者から提出された実験データなどの資料,その他調査に使われた資料,調査で行われた関係者のヒアリングの記録,外部機関に調査や分析を行っていればその報告書。加えて,調査にかかった費用とその使途がわかる資料(外部調査委員への支払なども含む)」である。本学では,研究不正の事案については,科学研究行動規範委員会において調査を行っているが,請求にかかる文書は以下の5つの理由に該当する部分について不開示とする決定を行った。
① 個人名その他個人を識別できる情報であって法5条1号ただし書イ,ロ,ハのいずれにも該当しないものが記されている部分を不開示とする。
② 審議,検討又は協議に関する情報であって,公にすることにより,率直な意見の交換若しくは意志決定の中立性が不当に損なわれるおそれがあるものについては,法5条3号に該当するため不開示とする。
③ 公にすることにより,当該事務又は事業の適正な遂行に支障を及ぼすおそれがあるものについては,法5条4号柱書きに該当するため不開示
とする。
④ 公にすることにより,正確な事実の把握を困難にするおそれ,若しくはその発見を困難にするおそれがあるものについては,法5条4号ハに該当するため不開示とする。
⑤ 公にすることにより,人事管理に係る事務に関し,その公正かつ円滑な人事の確保に支障を及ぼすおそれがある部分については,法5条4号
ヘに該当するため不開示とする。よって,本件対象文書を平成26年度~27年度科学研究行動規範委員会資料並びに支給調書として,部分開示決定を行ったものである。これについて,審査請求人は,平成29年4月4日受付の審査請求書のなかで,原処分の取消しを求めている。
Zhang, J., Xu, F. & Ouyang, C. (2012) Joint effect of polymorphism in the N-acetyltransferase 2 gene and smoking on hepatocellular carcinoma Tumor Biol. 33:1059-1063, doi 10.1007/s13277-012-0340-4
Chen, X., Liang, L., Hu, X. et al. (2012) Glutathione S-transferase P1 gene Ile105Val polymorphism might be associated with lung cancer risk in the Chinese population Tumor Biol. 33:1973-1981, doi 10.1007/s13277-012-0457-5
Zhang, Y. & Liu, C. (2013) The Interaction between Smoking and GSTM1 variant on lung cancer in the Chinese Population Tumor Biol. 34:395-401, doi 10.1007/s13277-012-0562-5
Li, CY., Yuan, P., Lin, SS. et al. (2013) Matrix metalloproteinase 9 expression and prognosis in colorectal cancer: a meta-analysis Tumor Biol. 34:735-741. doi 10.1007/s13277-012-0601-2
Zhang, RC. & Mou, SH. (2013) Polymorphisms of excision repair gene XPD Lys751Gln and hOGG1 Ser326Cys might not be associated with hepatocellular carcinoma risk: A meta-analysis Tumor Biol. 34:901-907, doi 10.1007/s13277-012-0625-7
Dong, Y., Zhuang, L. & Ma, W. (2013) Comprehensive assessment of the association of ERCC2 Lys751Gln polymorphism with susceptibility to cutaneous melanoma Tumor Biol. 34:1155-1160, doi 10.1007/s13277-013-0657-7
Wang, J., Xu, Y., Fu, Q. et al. (2013) Association of GSTT1 Gene Polymorphisms with the Risk of Prostate Cancer: An Updating Meta-analysis Tumor Biol. 34:1431-1440, doi 10.1007/s13277-012-0640-8
Huang, Y., Liu, X., Kuang, X. et al. (2013) CYP2D6 T188C variant is associated with lung cancer risk in the Chinese population Tumor Biol. 34:2189-2193, doi 10.1007/s13277-013-0755-6
Liu, C. & Wang, H. (2013) XRCC3 T241M polymorphism is associated risk of hepatocellular carcinoma in the Chinese Tumor Biol. 34:2249-2254, doi 10.1007/s13277-013-0765-4
Li, F., Liu, Y., Fu, T. et al. (2013) Associations of three common polymorphisms in CD95 and CD95L promoter regions with gastric cancer risk Tumor Biol. 34:2293-2289, doi 10.1007/s13277-013-0773-4
Li, W., Wu, H. & Song, C. (2013) TGF-?1 -509C/T (or +869T/C) polymorphism might be not associated with hepatocellular carcinoma risk Tumor Biol. 34:2675-2681, doi 10.1007/s13277-013-0818-8
He, J. & Xu, G. (2013) LEP gene variant is associated with prostate cancer but not with colorectal cancer Tumor Biol. 34:3131-3136, doi 10.1007/s13277-013-0881-1
Wu, D., Jiang, H., Gu, Q. et al. (2013) Association between XRCC1 Arg399Gln polymorphism and hepatitis virus-related hepatocellular carcinoma risk in Asian population Tumor Biol. 34:3265-3269, doi 10.1007/s13277-013-0899-4
Yin, Y., Feng, L. & Sun, J. (2013) Association between Glutathione S-transferase M 1 null genotype and risk of ovarian cancer: a meta-analysis Tumor Biol. 34:4059-4063, doi 10.1007/s13277-013-0995-5
Xu, JQ., Liu, P., Si, MJ. et al. (2013) MicroRNA-126 inhibits osteosarcoma cells proliferation by targeting Sirt1 Tumor Biol. 34:3871-3877, doi 10.1007/s13277-013-0974-x
Chen, H., Tang, C., Liu, M. et al. (2014) Association of XRCC1 gene single nucleotide polymorphisms and susceptibility to pancreatic cancer in Chinese Tumor Biol. 35:27-32, doi 10.1007/s13277-013-1001-y
Tian, X., Ma, P., Sui, C. et al. (2014) Comprehensive assessment of the association between tumor necrosis factor-alpha G238A polymorphism and liver cancer risk Tumor Biol. 35:103-109, doi 10.1007/s13277-013-1012-8
Li, ZC., Zhang, LM., Wang, HB. et al. (2014) Curcumin inhibits lung cancer progression and metastasis through induction of FOXO1 Tumor Biol. 35:111-116, doi 10.1007/s13277-013-1013-7
Jin, B., Dong, P., Li, K. et al. (2014) Meta-analysis of the association between GSTT1 null genotype and risk of nasopharyngeal carcinoma in Chinese Tumor Biol. 35:345-349, doi 10.1007/s13277-013-1047-x
Sun, HL., Han, B., Zhai, HP. et al. (2014) Association between Glutathione S-transferase M1 null genotype and risk of gallbladder cancer: a meta-analysis Tumor Biol. 35:501-505, doi 10.1007/s13277-013-1070-y
Xu, W., Wang, F., Ying, L. et al. (2014) Association between Glutathione S-transferase M1 null variant and risk of bladder cancer in Chinese Han population Tumor Biol. 35:773-777, doi 10.1007/s13277-013-1105-4
Luo, S., Guo, L., Li, Y. et al. (2014) Vitamin D receptor gene ApaI polymorphism and breast cancer susceptibility: a meta-analysis Tumor Biol. 35:785-790, doi 10.1007/s13277-013-1107-2
Chen, H., Zhou, B., Lan, X. et al. (2014) Association between single nucleotide polymorphisms of OGG1 gene and pancreatic cancer risk in Chinese Han population Tumor Biol. 35:809-813, doi 10.1007/s13277-013-1111-6
Lv, S., Turlova, E., Zhao, S. et al. (2014) Prognostic and clinicopathological significance of survivin expression in bladder cancer patients: a meta-analysis Tumor Biol. 35:1565-1574, doi 10.1007/s13277-013-1216-y
Liu, C., Yin, L., Chen, J. et al. (2014) The apoptotic effect of shikonin on human papillary thyroid carcinoma cells?through mitochondrial pathway Tumor Biol. 35:1791-1798, doi 10.1007/s13277-013-1238-5
Shen, L., Chen, XD. & Zhang, YH. (2014) MicroRNA-128 promotes Proliferation in Osteosarcoma Cells by Down-Regulating PTEN Tumor Biol. 35:2069-2074, doi 10.1007/s13277-013-1274-1
Ma, Z., Guo, W., Gong, T. et al. (2014) CYP1A2 rs762551 polymorphism contributes to risk of lung cancer: a meta-analysis Tumor Biol. 35:2253-2257, doi 10.1007/s13277-013-1298-6
Geng, S., Wang, X., Xu, X. et al. (2014) Steroid receptor coactivator-3 promotes osteosarcoma progression through up-regulation of FoxM1 Tumor Biol. 35:3087-3094, doi 10.1007/s13277-013-1406-7
He, G., Chen, G., Chen, W. et al. (2014) Lack of association of XRCC1 rs1799782 genetic polymorphism with risk of pancreatic cancer: A meta-analysis Tumor Biol. 35:4545-4550, doi 10.1007/s13277-013-1598-x
Han, M., Lv, S., Zhang, Y. et al. (2014) The prognosis and clinicopathology of CXCR4 in gastric cancer patients: a meta-analysis Tumor Biol. 35:4589-4597, doi 10.1007/s13277-013-1603-4
Han, S., Cai, Z., Peng, L. et al. (2014) Ployamidoamine dendrimer loposome mediated survivin antisense oligonucleotide inhibits hepatic cancer cell proliferation by inducing apoptosis Tumor Biol. 35:5013-5019, doi 10.1007/s13277-014-1661-2
Wang, L., Chen, Z., Wang, Y. et al. (2014) The association of c.1471G&>A genetic polymorphism in XRCC1 gene with lung cancer susceptibility in Chinese Han population Tumor Biol. 35:5389-5393, doi 10.1007/s13277-014-1702-x
Yao, C., Lv, S., Han, M. et al. (2014) The association of Crk-like adapter protein with poor prognosis in glioma patients Tumor Biol. 35:5695-5700, doi 10.1007/s13277-014-1754-y
Pei, J., Lou, Y., Zhong, R. et al. (2014) MMP9 activation triggered by epidermal growth factor induced FoxO1 nuclear exclusion in none small cell lung cancer Tumor Biol. 35:6673-6678, doi 10.1007/s13277-014-1850-z
Chen, J., Huang, Q. & Wang, F. (2014) Inhibition of FoxO1 nuclear exclusion prevents metastasis of glioblastoma Tumor Biol. 35:7195-7200, doi 10.1007/s13277-014-1913-1
Liu, L., Zou, J., Wang, Q. et al. (2014) Novel microRNAs expression of patients with drug resistant and sensitive chemotherapy of Epithelial Ovarian Cancer and preliminary analysis Tumor Biol. 35:7713-7717, doi 10.1007/s13277-014-1970-5
Huang, J., Sun, C., Zhang, T. et al. (2014) Potent antitumor activity of HSP90 inhibitor AUY922 in adrenocortical carcinoma Tumor Biol. 35:8193-8199, doi 10.1007/s13277-014-2063-1
Mao, D., Zhang, Y., Lu, H. et al. (2014) Molecular basis underlying inhibition of metastasis of gastric cancer by anti-VEGFa treatment Tumor Biol. 35:8217-8223, doi 10.1007/s13277-014-2095-6
Lu, H., Li, H., Mao, D. et al. (2014) Nrdp1 inhibits growth of colorectal cancer cells by nuclear retention of p27 Tumor Biol. 35:8639-8643, doi 10.1007/s13277-014-2132-5
Wang, F., Xiao, W., Sun, J. et al. (2014) MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma Tumor Biol. 35:8653-8658, doi 10.1007/s13277-014-2131-6
Cen, G., Ding, HH., Liu, B. et al. (2014) FBXL5 targets Cortactin for ubiquitination-mediated destruction to regulate gastric cancer cell migration Tumor Biol. 35:8633-8638, doi 10.1007/s13277-014-2104-9
Wang, X. & Cao, X. (2014) Regulation of metastasis of pediatric multiple myeloma by MMP13 Tumor Biol. 35:8715-8720, doi 10.1007/s13277-014-2147-y
Zhou, X. & Qi, Y. (2014) PLGF inhibition impairs metastasis of larynx carcinoma through MMP3 downregulation Tumor Biol. 35:9381-9386, doi 10.1007/s13277-014-2232-2
Xu, JQ., Zhang, WB., Wan, R. et al. (2014) MicroRNA-32 inhibits osteosarcoma cells proliferation and invasion by targeting Sox9 Tumor Biol. 35:9847-9853, doi 10.1007/s13277-014-2229-x
Ding, H., Zhu, Y., Chu, T. et al. (2014) Epidermal growth factor induces FoxO1 nuclear exclusion to activates MMP7-medidated metastasis of larynx carcinoma Tumor Biol. 35: 9987-9992, doi 10.1007/s13277-014-2067-x
Li, X., Zhang, G., Huai, YJ. et al. (2014) Association between APE1 T1349G polymorphism and prostate cancer risk: Evidence from a meta-analysis Tumor Biol. 35:10111-10119, doi 10.1007/s13277-014-2115-6
Yang, YQ., Qi, J., Xu, JQ. et al. (2014) MicroRNA-142-3p, a novel target of tumor suppressor Menin, inhibits osteosarcoma cell proliferation by down-regulation of FASN Tumor Biol. 35:10287-10293, doi 10.1007/s13277-014-2316-z
Ye, Y., Zhou, X., Li, X. et al. (2014) Inhibition of epidermal growth factor receptor signaling prohibits metastasis of gastric cancer via downregulation of MMP7 and MMP13 Tumor Biol. 35:10891-10896, doi 10.1007/s13277-014-2383-1
Wang, J., Su, H., Han, X. et al. (2014) Inhibition of fibroblast growth factor receptor signaling impairs metastasis of hepatocellular carcinoma Tumor Biol. 35:11005-11011, doi 10.1007/s13277-014-2384-0
Duan, JH. & Fang, L. (2014) MicroRNA-92 promotes gastric cancer cell proliferation and invasion through targeting FXR Tumor Biol. 35:11013-11019, doi 10.1007/s13277-014-2342-x
Li, XD., Zhang, YJ. & Han, JC. (2014) Betulin inhibits lung carcinoma proliferation through activation of AMPK signaling Tumor Biol. 35:11153-11158, doi 10.1007/s13277-014-2426-7
Piao, YR., Jin, ZH., Yuan, KC. et al. (2014) Analysis of Tim 3 expression in prostate cancer Tumor Biol. 35:11409-11414, doi 10.1007/s13277-014-2464-1
Liu, S., Gong, Z., Chen, M. et al. (2014) Lgr5-positive cells are cancer stem cells in skin squamous cell carcinoma Tumor Biol. 35:11605-11612, doi 10.1007/s13277-014-2488-6
Xu, WJ., Guo, BL., Han, YG. et al. (2014) Diagnostic value of alpha-fetoprotein-L3 and Golgi protein 73 in hepatocellular carcinomas with low AFP levels Tumor Biol. 35:12069-12074, doi 10.1007/s13277-014-2506-8
Su, ZX., Zhao, J., Rong, ZH. et al. (2014) Diagnostic and prognostic value of circulating miR-18a in the plasma of patients with gastric cancer Tumor Biol. 35:12119-12125, doi 10.1007/s13277-014-2516-6
Li, K., Zhong, C., Wang, J. et al. (2014) Association of androgen receptor Exon 1 CAG repeat length with risk of hepatocellular carcinoma: a case-control study Tumor Biol. 35:12519-12523,doi 10.1007/s13277-014-2570-0
Luo, K., Shi, Y. & Peng, J. (2014) The effect of Chemokine CC Motif Ligand 19 on the proliferation and migration of Hepatocellular Carcinoma Tumor Biol. 35:12575-12581, doi 10.1007/s13277-014-2578-5
Zhang, G., Zhao, Q., Yu, S. et al. (2015) Pttg1 inhibits TGF? signaling in breast cancer cells to promote their growth Tumor Biol. 36:199-203, doi 10.1007/s13277-014-2609-2
Peng, C., Zhou, K., An, S. et al. (2015) The effect of CCL19/CCR7 on the proliferation and migration of cell in prostate cancer Tumor Biol. 36:329-335, doi 10.1007/s13277-014-2642-1
Han, G., Xie, S., Fang, H. et al. (2015) The AIB1 gene polyglutamine repeat length polymorphism contributes to risk of Epithelial Ovarian Cancer Risk: a case-control study Tumor Biol. 36:371-374, doi 10.1007/s13277-014-2661-y
Lu, J., Yin, X. & Jiang, J. (2015) Sports-induced blood sugar utilization prevents development of pancreatic ductal adenocarcinoma Tumor Biol. 36:663-667, doi 10.1007/s13277-014-2684-4
Jiang, Y., Sun, S., Liu, G. et al. (2015) Nrdp1 inhibits metastasis of colorectal cancer cells by EGFR-signaling-dependent MMP7 modulation Tumor Biol. 36:1129-1133, doi 10.1007/s13277-014-2726-y
Zhang, Z., Yan, Z., Yuan, Z. et al. (2015) SPHK1 inhibitor suppresses cell proliferation and invasion associated with the inhibition of NF-?B Pathway in hepatocellular carcinoma Tumor Biol. 36:1503-1509, doi 10.1007/s13277-014-2665-7
Huang, J., Jia, J., Tong, Q. et al. (2015) Knockdown of cancerous inhibitor of protein phosphatase 2A may sensitize Metastatic Castration-Resistant Prostate Cancer Cells to Cabazitaxel Chemotherapy Tumor Biol. 36:1589-1594, doi 10.1007/s13277-014-2748-5
Lin, ZY., Song, QQ., Chen, J. et al. (2015) Local curative effect of MRI-guided radiofrequency ablation on small hepatocellular carcinoma Tumor Biol. 36:2105-2110, doi 10.1007/s13277-014-2819-7
Li, C., Zhao, Z., Zhou, Z. et al. (2015) Augmented TGF? receptor signaling induces apoptosis of pancreatic carcinoma cells Tumor Biol. 36:2815-2819, doi 10.1007/s13277-014-2908-7
Liao, A., Wang, W., Sun, D. et al. (2015) Bone morphogenetic protein 2 mediates epithelial-mesenchymal transition via AKT and ERK signaling pathways in gastric cancer Tumor Biol. 36:2773-2778, doi 10.1007/s13277-014-2901-1
Liu, M., Zhang, K., Zhao, Y. et al. (2015) Evidence for involvement of steroid receptors and coactivators in neuroepithelial and meningothelial tumors Tumor Biol. 36:3251-3261, doi 10.1007/s13277-014-2954-1
Xu, Y., Lu, Y., Song, J. et al. (2015) Cancer-associated fibroblasts promote renal cell carcinoma progression Tumor Biol. 36:3483-3488, doi 10.1007/s13277-014-2984-8
Guo, Z., Liu, D. & Su, Z. (2015) CIP2A mediates prostate cancer progression via the c-MYC signaling pathway Tumor Biol. 36:3583-3589, doi 10.1007/s13277-014-2995-5
Li, S., Lei, X., Zhang, J. et al. (2015) Insulin-like growth factor 1 promotes growth of gastric cancer by inhibiting foxo1 nuclear retention Tumor Biol. 36:4519-4523, doi 10.1007/s13277-015-3096-9
Guo, Z., Liu, D. & Su, Z. (2015) CIP2A mediates prostate cancer progression via the c-MYC signaling pathway Tumor Biol. 36:4777-4783, doi 10.1007/s13277-015-3129-4
Chen, Y., Tian, Y., Ji, Z. et al. (2015) CC-chemokine receptor 7 is Overexpressed and Correlates with Gowth and Metastasis in Prostate Cancer Tumor Biol. 36:5537-5541, doi 10.1007/s13277-015-3222-8
Liu, H., Li, W., Chen, C. et al. (2015) MiR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma Tumor Biol. 36:6613-6319, doi 10.1007/s13277-015-3317-2
Chen, B., Hou, Z., Li, C. et al. (2015) MiRNA-494 inhibits metastasis of cervical cancer through Pttg1 Tumor Biol. 36:7143-7149, doi 10.1007/s13277-015-3440-0
Li, R., Shi, X., Ling, F. et al. (2015) MiR-34a suppresses ovarian cancer proliferation and motility by targeting AXL Tumor Biol. 36:7277-7283, doi 10.1007/s13277-015-3445-8
Zhang, Y., Li, A., Peng, W. et al. (2015) Efficient inhibition of growth of metastatic cancer cells after resection of primary colorectal cancer by soluble Flt-1 Tumor Biol. 36:7399-7407, doi 10.1007/s13277-015-3434-y
Jiang, Y., Meng, Q., Qi, J. et al. (2015) MiR-497 promotes metastasis of colorectal cancer cells through Nrdp1 inhibition Tumor Biol. 36:7641-7647, doi 10.1007/s13277-015-3489-9
Zhao, Z., Xi, H., Xu, D. et al. (2015) Transforming growth factor ? receptor signaling restrains growth of pancreatic carcinoma cells Tumor Biol. 36:7711-7716, doi 10.1007/s13277-015-3466-3
Guo, H., Xu, Y. & Fu, Q. (2015) Curcumin inhibits growth of Prostate carcinoma via miR-208-mediated CDKN1A activation Tumor Biol. 36:8511-8517, doi 10.1007/s13277-015-3592-y
Liu, G., Zhu, Z., Lang, F. et al. (2015) Clinical significance of CUL4A in human prostate cancer Tumor Biol. 36:8553-8558, doi 10.1007/s13277-015-3580-2
Zhao, J., Kong, Z., Xu, F. et al. (2015) A role of MMP-14 in the regulation of invasiveness of nasopharyngeal carcinoma Tumor Biol. 36:8609-8615, doi 10.1007/s13277-015-3558-0
Chen, L., Xu, L. & Wang, G. (2015) Regulation of Met-mediated proliferation of thyroid carcinoma cells by miR-449b Tumor Biol. 36:8653-8660, doi 10.1007/s13277-015-3619-4
Du, Y., Wang, Y., Zhang, F. et al. (2015) Regulation of metastasis of bladder cancer cells through WNT signaling pathway Tumor Biol. 36:8839-8844, doi 10.1007/s13277-015-3563-3
Zhang, XT., Zhang, Z., Xin, YN. et al. (2015) Impairment of growth of gastric carcinoma by miR-133-mediated Her-2 inhibition Tumor Biol. 36:8925-8930, doi 10.1007/s13277-015-3637-2
Gong, C., Zhang, Y., Chen, Y. et al. (2015) High expression of ErbB3 binding protein 1 (EBP1) predicts poor prognosis of pancreatic ductal adenocarcinoma (PDAC) Tumor Biol. 36:9189-9199, doi 10.1007/s13277-015-3625-6Date: 16th June 2017As an update to the retraction note, further investigation has revealed that the compromised peer review process was through no fault of the authors.
Ma, X., Li, X., Lu, X. et al. (2015) Interaction between TNFR1 and TNFR2 dominates the clinicopathologic features of human hypopharyneal carcinoma Tumor Biol. 36:9421-9429, doi 10.1007/s13277-015-3684-8
Fang, C., Shen, Y., Qi, P. et al. (2015) Astrocyte elevated gene-1 mediates insulin-like growth factor 1-induced the progression of cardiac myxoma Tumor Biol. 36:9769-9777, doi 10.1007/s13277-015-3739-x
Song, JG., Xie, HH., Li, N. et al. (2015) SUMO-specific protease 6 promotes gastric cancer cells growth via de-SUMOylation of FoxM1 Tumor Biol. 36:9865-9871, doi 10.1007/s13277-015-3737-z
Sun, E., Zhang, W., Wang, L. et al. (2016) Down-regulation of Sphk2 Suppresses Bladder Cancer Progression Tumor Biol. 37:473-478, doi 10.1007/s13277-015-3818-z
Wang, H., Yang, M., Xu, J. et al. (2016) Survivin mRNA-circulating tumor cells are associated with tumor metastasis in prostate cancer Tumor Biol. 37:723-727, doi 10.1007/s13277-015-3812-5
Yan, J., Zhang, Y., Shi, W. et al. (2016) The critical role of HMGA2 in regulation of EMT in epithelial ovarian carcinomas Tumor Biol. 37:823-828, doi 10.1007/s13277-015-3852-x
Niu, H., Zhang, X., Wang, B. et al. (2016) The clinical utility of image-guided iodine-125 seed in patients with unresectable pancreatic cancer Tumor Biol. 37:2219-2223, doi 10.1007/s13277-015-4045-3
Xu, G., Qi, F., Zhang, J. et al. (2016) Overexpression of OCT4 contributes to progression of hepatocellular carcinoma Tumor Biol. 37:4649-4654, doi 10.1007/s13277-015-4285-2
Fan, JY., Yang, Y., Xie, JY. et al. (2016) MicroRNA-144 mediates metabolic shift in ovarian cancer cells by directly targeting Glut1 Tumor Biol. 37:6855-6860, doi 10.1007/s13277-015-4558-9
Pan, J., Lu, F., Xu, H. et al. (2016) Low p21 level is necessary for the suppressive effects of micoRNA-31 on glioma cell migration and invasion Tumor Biol. 37:9663-9670, doi 10.1007/s13277-016-4788-5
Li, J., Song, Z., Wang, Y. et al. (2016) Overexpression of SphK1 enhances cell proliferation and invasion in triple-negative breast cancer via the PI3K/AKT signaling pathway Tumor Biol. 37:10587-10593, doi 10.1007/s13277-016-4954-9
Li, Y., Dong, M., Kong, F. et al. (2015) Octamer transcription factor 1 mediates epithelial-mesenchymal transition in colorectal cancer Tumor Biol. 36:9941-9946, doi 10.1007/s13277-015-3766-7
Li, S., Gao, Y., Ma, W. et al. (2016) Ginsenoside Rh2 inhibits invasiveness of glioblastoma through modulation of VEGF-A Tumor Biol. 37:15477-15482, doi 10.1007/s13277-015-3759-6
Shi, Y., Tan, Y., Zeng, D. et al. (2016) MiR-203 suppression in gastric carcinoma promotes Slug-mediated cancer metastasis Tumor Biol. 37:15483-15488, doi 10.1007/s13277-015-3765-8
Sun, J., Ding, W., Zhi, J. et al. (2016) MiR-200 suppresses metastases of colorectal cancer through ZEB1 Tumor Biol. 37:15501-15507, doi 10.1007/s13277-015-3822-3
Gao, F., Wang, T., Zhang, Z. et al. (2016) Regulation of activating protein-4-associated metastases of non-small cell lung cancer cells by miR-144 Tumor Biol. 37:15535-15541, doi 10.1007/s13277-015-3866-4
Peng, Z., Xu, T., Liao, X. et al. (2016) Effects of radiotherapy on nasopharyngeal carcinoma cell invasiveness Tumor Biol. 37:15559-15566, doi 10.1007/s13277-015-3960-7
Liu, W., An, J., Li, K. et al. (2016) MiR-429 regulates gastric cancer cell invasiveness through ZEB proteins Tumor Biol. 37:15575-15581, doi 10.1007/s13277-015-4094-7
Zhang, Z., Zhou, Q., Miao, Y. et al. (2016) MiR-429 induces apoptosis of glioblastoma cell through Bcl-2 Tumor Biol. 37:15607-15613, doi 10.1007/s13277-015-4291-4
Zhang, Z., Song, X., Feng, X. et al. (2016) Norcantharidin modulates miR-655-regulated SENP6 protein translation to suppresses invasion of glioblastoma cells Tumor Biol. 37:15635-15641, doi 10.1007/s13277-015-4447-2
Science journal retracts 107 research papers by Chinese authors (South China Morning Post 23 April, 2017, 11:45pm, UPDATED 12 June, 2017, 12:53pm):”A major international publisher has retracted 107 research papers by Chinese authors after learning about irregularities in their peer review process. The Springer Nature publishing company said on Thursday the papers were published in the journal Tumor Biology between 2012 and last year. The authors supplied the journal’s editors with made-up contact information of third-party reviewers.”
こんせぷちゅあるあどばんす【conceptual advance】研究成果が、既成の概念の変更を迫るくらいに革新的であること。トップジャーナルには必須とされ、これがないとリジェクトされる理由になる。「コンセプチュアル・アドバンスがないと、ネイチャーなんて通りっこないよ。」”The paper does not provide the conceptualadvance needed for publication in Science.” “Manuscripts may be rejected because they represent a relatively small conceptualadvance on our present state of knowledge.” “A referee has raised major conceptual concerns about the advance your findings represent.”
すべてはつながってくる【全ては繋がってくる】①世の中における真理の一つ。“You can’t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future.” (Steve Jobs) ②ラボのメインの仕事ではない研究テーマや、メインストーリーから外れる実験を学生に無理強いするときにボスが使う言葉。「全ては繋がって来るんだよ!」「‥」
I am/We are pleased【be pleased】 ”喜んで‥” 論文投稿後にエディターから送られて来るdecisionメールを読み始めた研究者が、一番期待して探し求める言葉。論文が受理されたことを伝えるときに必ず含まれている語句。”I am pleased to inform you that your manuscript has been accepted for publication in XXXX (ジャーナル名). ” “We are pleased to inform you that your manuscript ‘XXXXXX(論文タイトル)’ has been provisionally accepted for publication in XXXX (ジャーナル名).”
プロナス【Proceedings of the National Academy of Science】中堅どころの学術誌のひとつ。 ピーエヌエーエス(PNAS)とも呼ばれる。ピーナスと呼ぶ日本人も結構な数いるが、penis(ペニス)の英語の発音と同じに聞こえるため、控えたほうがいいと個人的には思う。
I/We regret 【regret】 ”残念ながら‥” 論文投稿後にエディターから送られて来るdecisionメールの中で、研究者が一番目にしたくない言葉。悪い知らせを伝える文に必ず含まれている語句 “I regret to inform you thatwe cannot publish your manuscript in XXXX (ジャーナル名).” “I regretthatwe are unable to publish it in XXXX (ジャーナル名).” “Weregret to say thatwe will not be able to accept this manuscript for publication in XXXX (ジャーナル名)”
クレジット【credit】「科学者の研究への貢献を認めることをクレジット(credit)といいます。」(科学の健全な発展のために -誠実な科学者の心得ー 日本学術振興会 PDF14ページ). Caudri et al., Doing science: how to get credit for your scientific work. Breathe (Sheff). 2015 Jun; 11(2): 153–155. (PubMed)
We showed unassembled original data, validating the conclusion.
We showed original data. Figures were correctly assembled (Potential aberration in figures pointed by this accuser can be explained by the limited ability of powerpoint operation).
Original data show identical error bars. But another issue arose through the investigation (see Corrections in our papers).
We showed the original image, which excluded the possibility of a copy and paste. However, a faint band in the IP IgG lane was partly erased by flaFening (see Corrections in our papers).
We showed original data. No image manipulation occurred.
We showed original data. All figures were correctly assembled. In graph e, the fold enrichment to the arm region (zfs) is shown (as described in the legend). Therefore, a set of zfs scores is always ‘1’.
We showed original data. Graphs were correctly assembled.
We showed original data. Graphs were correctly assembled.
We showed the original pictures. All pictures were similarly assembled from two parts in the same plate, so they are valid. Erroneously introduced different adjustment does not influence the conclusion.
The original data indicate that there are minus scores in the ChIP assays. The indicated error bars derive from scores near zero or minus. Graphs were correctly assembled.
We explain that the plates contain phloxin B so that the dead cells become darker. No image manipulation occurred.
We showed original graph, which we traced to produce the published version.
We showed original data in all these panels. No image manipulation occurred. The accentuated contrast, however, erased faint bands in the panels of Tubulin (Fig 3e), CAP-H (Fig 3g), Cdc13 (Fig 5a) and Ac-n (Fig S16) (see Corrections in our paper).
We showed original data. No image manipulation occurred.
These are artifacts arising from the PDF conversion. We showed the original data in Powerpoint file. No image aberration occurred.
We showed original data of all panels, including the right upper panel. Although the leZ two panels derive from the same sample, these were concatenated to assemble the published figure (see Corrections in our papers).
We showed original data in the Excel file. These errors were caused by a mis-calculation of the Excel file (see Corrections in our papers).
We showed original data. No image manipulation occurred.
(出典:Accusation(E).pdf 太字強調は当サイトによる)
“This is a totally groundless and false accusation by a faceless complainant,” Kadowaki told ScienceInsider in an email. “We have absolute confidence in all of our data,” he wrote. (University of Tokyo to investigate data manipulation charges against six prominent research groups. Science News ScienceInsider By Dennis Normile Sep. 20, 2016)
Fig. 1, If you open the paper PDF in Inkscape or Adobe Illustrator, and put aside some objects on the bar graphs, the hidden parts of the error bars come into sight. You can find similar inappropriate data presentation all over this paper, as Ordinary_researchers pointed out in the documents.
告発文書によれば、この論文の図4のバーグラフでは、なんとエラーバーの長さが複数のグラフに対して2種類しかないそうです。先ほどと同様に論文のPDFファイルをInkscapeで開きます。不自然な箇所の指摘は多数ありますが、とりあえず、Figure 4a i のグラフに絞ってみてみます。ここには9個の棒グラフおよびエラーバーがありますが、エラーバー以外を全て取り去り、「グループ解除」「グループ化」「整列」「配置」などを使って、エラーバーの高さがわかりやすいように整列させてみました(下図)。告発文書の指摘通り、9つのエラーバー(標準偏差)なのに、大きさが2種類しかありません。
Fig.4a i, When aligned, it becomes obvious that some error bars are identical to each other. You can find similar inappropriate data presentation in other graphs in this paper, as pointed out by Ordinary_researchers in the documents. Semba et al., 2016 Nat Commun Fig.4a iで用いられていた9つのエラーバーを整列させたところ、高さが2種類しかない
(Fig.3d, When aligned, it becomes obvious that the error bars in Fig.3d are identical. For more detailed information, see the Ordinary_researchers’ documents.)
Nature Communications 7, Article number: 11635 (2016) doi:10.1038/ncomms11635 Published online:18 May 2016. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Hiroaki Semba, Norihiko Takeda, Takayuki Isagawa, Yuki Sugiura, Kurara Honda, Masaki Wake, Hidenobu Miyazawa, Yoshifumi Yamaguchi, Masayuki Miura, Dana M. R. Jenkins, Hyunsung Choi, Jung-whan Kim, Masataka Asagiri, Andrew S. Cowburn, Hajime Abe, Katsura Soma, Katsuhiro Koyama, Manami Katoh, Keimon Sayama, Nobuhito Goda, Randall S. Johnson, Ichiro Manabe, Ryozo Nagai & Issei Komuro 問題点:エラーバーの長さが2種類のみの図
International Heart Journal Vol. 57 (2016) No. 2 p. 198-203. http://doi.org/10.1536/ihj.15-332. Shorter Heart Failure Duration Is a Predictor of Left Ventricular Reverse Remodeling During Adaptive Servo-Ventilator Treatment in Patients With Advanced Heart Failure.Teruhiko Imamura1), Koichiro Kinugawa1), Daisuke Nitta1), Issei Komuro2) 1) Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, The University of Tokyo 2) Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo. Released on J-STAGE 20160322 [Advance Publication] Released 20160311. 問題点:奇妙なまでに一致する平均値とSD PubPeer.comでの議論:https://pubpeer.com/publications/26973264
Scientific Reports5, Article number: 14453 (2015) doi:10.1038/srep14453. Published online: 25 September 2015. Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression. Chizuru Yabumoto, Hiroshi Akazawa, Rie Yamamoto, Masamichi Yano, Yoko Kudo-Sakamoto, Tomokazu Sumida, Takehiro Kamo, Hiroki Yagi, Yu Shimizu, Akiko Saga-Kamo, Atsuhiko T. Naito, Toru Oka, Jong-Kook Lee, Jun-ichi Suzuki, Yasushi Sakata, Etsuko Uejima & Issei Komuro 問題点:Fig.7 完全に一致するエラーバーの長さ PubPeer.comでの議論:https://pubpeer.com/publications/26571361
Nature455, 251-255 (11 September 2008) | doi:10.1038/nature07217; Received 8 April 2008; Accepted 27 June 2008; Published online 17 August 2008. Heterochromatin links to centromeric protection by recruiting shugoshin. Yuya Yamagishi, Takeshi Sakuno, Mari Shimura & Yoshinori Watanabe 問題点:異なるSDを持つ同一データ;背景が均一なウェスタンブロット画像;背景が均一化された蛍光顕微鏡画像;グラフのデータは実在するのか?;切り貼りされ、縁の奇妙な酵母培養ディッシュ
Science 08 Oct 2010:Vol. 330, Issue 6001, pp. 239-243 DOI: 10.1126/science.1194498. Two Histone Marks Establish the Inner Centromere and Chromosome Bi-Orientation. Yuya Yamagishi, Takashi Honda, Yuji Tanno, Yoshinori Watanabe 問題点:数学的にあり得ないSD
Nature Cell Biology 12, 500 – 506 (2010) Published online: 11 April 2010 | doi:10.1038/ncb2052Shugoshin–PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase. Tadashi Ishiguro, Koichi Tanaka, Takeshi Sakuno & Yoshinori Watanabe 問題点:部分的に諧調を変更した培養ディッシュ;粗雑なグラフ PubPeer.comでの著者らの回答:https://pubpeer.com/publications/20383139
Nature 2011 Jun 1;474(7352):477-83. doi: 10.1038/nature10179. Condensin association with histone H2A shapes mitotic chromosomes. Kenji Tada,Hiroaki Susumu,Takeshi Sakuno & Yoshinori Watanabe 問題点:エラーバーが調節された可能性;ノイズが消失した背景;その他グラフについて
EMBO Reports 2011 Oct 28;12(11):1189-95. doi: 10.1038/embor.2011.188. Acetylation regulates monopolar attachment at multiple levels during meiosis I in fission yeast. Ayano Kagami, Takeshi Sakuno, Yuya Yamagishi, Tadashi Ishiguro, Tatsuya Tsukahara, Katsuhiko Shirahige, Koichi Tanaka, Yoshinori Watanabe 問題点:背景が均一なウェスタン画像
Unregistered Submission:( August 22nd, 2016 4:53pm UTC )
I’m not looking forward to a flood of posts suggesting that the error bars are too similar. In order to improve the quality of such posts, I suggest the following.
1) Try only to work with figures where the graphics exist in a vectorial format (pdf).
2) Open the figure in a vector graphics program (illustrator, inkscape,…)
3) Delete all the elements except those of interest (the error bars)
4) Save as postscript (uncompressed)
5) Examine the file as text
6) The precise coordinates (in pts) should be available
7) If several error bars are exactly the same, then you have something to write about.
(https://pubpeer.com/publications/26973264)
まじめな先生は、教授室や研究室で女子学生と2人きりで会うことは絶対にありません。そんな状況になったときは、ドアを開けておく。学外で2人きりで会うこともない。もし、2人きりになってドアを閉じるような先生ならば注意すべきでしょう。(大学セクハラ -大学生の娘が担当教授から「性的被害」を受けたら…… PRESIDENT 2007年12月3日号 president.jp)
教授の中には、露骨に「君には今度の学会で論文を発表させてあげよう」とか「君をどこそこの研究機関に紹介してあげよう」などと甘言をもちいて性的な誘いをするケースがあり、これを学生が拒否すると、その後全然指導をしてくれなくなったり、研究テーマをもらえなかったり、今までの態度をひるがえし、研究内容について罵倒される、などの不利益をこうむるケースがありえます。 (助けて!教授がセクハラをしてきます。All About 2008年08月27日)
「日経の顔」田勢康弘早大教授がセクハラで解職(My News Japan 04/09 2010):”日経新聞の客員コラムニストで早大大学院客員教授の田勢康弘氏(65)が、修士論文審査中の女子学生に対して「共著で小説を出すんだから脱げ」という趣旨のセクハラ行為をしていた件で、2010年3月末に早大を解職されていたことが分かった。”
同性愛を暴露され転落死 望まない”アウティング”に「想像力の欠如」の声も (The Huffington Post 2016年08月06日):”同性愛者であることを同級生に暴露された後、心身に不調を来して、建物から転落死した一橋大法科大学院生の男性(当時25)の両親が、大学と同級生に計300万円の損害賠償を求める訴訟を東京地裁に起こした。”
The shifting tide of sexual harassment in science (By Rachel Feltman The Washington Post February 10, 2016):”We know it happens, and far too often: Young women in academia – especially in scientific fields – face sexual harassment that can range from inappropriate comments to actual assault. The perpetrators are frequently their male supervisors.”
How to stop the sexual harassment of women in science: reboot the system (THE CONVERSATION January 29, 2016 6.20am AEDT) “The culture in astronomy, and in science more broadly, needs a major reboot following revelations early this year of another case of harassment against women by a senior male academic. The journal Science revealed earlier this month that the latest case involved Christian Ott, a professor of theoretical astrophysics at Caltech university, in the United States. Frustrated that Ott was not fired and only placed on unpaid leave for a year, the two female students who raised the allegations took their story to the popular online news outlet Buzzfeed. Also this month, US Congresswoman Jackie Speier raised the case of Professor Tim Slater, who had been investigated for various sexual harassment incidents that began after he was hired by the University of Arizona in August 2001. Slater went on to the University of Wyoming.”
How Women Are Harassed Out of Science (Joan C. Williams and Kate Massinger. The Atlantic Jul 25, 2016 )The discrimination young researchers endure makes America’s need for STEM workers even greater.
How Sexual Harassment Halts Science (By Vince Grzegorek July 19 2016 1:01 PM slate.com) Recent reports have revealed how rampant sexual harassment is in the astronomy community. What’s to be done?
‘We All Felt Trapped’ (INSIDE HIGHER ED January 23, 2015 ):”The harassment, however, “started day one,” Harbi said. Eventually, she said she discovered she was one of many women, which MIT confirmed. Harbi last October sent MIT a packet of more than 100 chat logs, emails, pictures, recordings and screenshots to document the harassment against her and other women. She gave Inside Higher Ed permission to view the contents on condition that they not be published and that names of the other women not be disclosed. The various pieces of evidence include nudity and sexually explicit language. After reviewing the packet, MIT last month announced that an investigation had determined that Lewin, 78, had “engaged in online sexual harassment in violation of MIT policies.”” 物理学講義で有名なウォルター・ルーウィン(Walter Lewin)MIT教授がセクハラで処分された事例。
Berkeley professor at center of sexual harassment scandal sues his accusers (The Guardian 29 September 2016):”Blake Wentworth, assistant professor of south and south-east Asian studies, has accused the women of defamation and “intentional infliction of emotional distress”, with new lawsuits filed nearly a year after university investigators concluded that he had violated sexual harassment policies.”
Fil-Am UC Berkeley student file sexual harassment complaint vs. professor UC Berkeley graduate student instructors Erin Bennett and Filipino-American Kathleen Gutierrez filed a complaint with a state agency claiming that a faculty member created a hostile work environment and that the school did little to help them.
Study: Young female scientists face sexual harassment, assault while in the field (By Caelainn Hogan The Washington Post July 17, 2014) “As government initiatives push women to enter careers in science, a new study reveals that young female scientists are getting sexually harassed and even assaulted while conducting field work crucial to their success — mostly by their supervisors. The study, published in the journal PLOS ONE, claims to be the first to investigate experiences of scientists at field sites, surveying 142 men and 516 women with experience working in anthropology, archaeology, geology and other scientific disciplines”
#1 Nature. 1998 Jan 1;391(6662):96-9.
Fig 1a. Lane 1 is similar to Lane 5. Lane 6 is similar to Lane 10.
#2 J Biol Chem. 2000 Mar 17;275(11):8091-6.
Fig 3A. Lane 3 is similar to Lane 8, 9, and 10. Fig 3B. Lane 1 is similar to Lane 2.
#3 Arch Biochem Biophys. 2001 Apr 1;388(1):91-9.
Fig 2A. Lanes 2-3 are similar to lanes 9-10. Fig 4B. Lanes 2-3 are similar to lanes 9-10.
#4 Diabetes. 2002 Oct;51(10):2915-21.
Fig 5. 18S of B is similar to that of C (horizontal flip).
#5 Nat Med. 2002 Jul;8(7):731-7. Epub 2002 Jun 17.
Fig 1b. +/- is partially similar to -/-. Fig 2. 18S of a is similar to that of b. Fig 5a. 28s of TNF-alpha(-) and Adiponectin(+) is similar to that of TNF-alpha(+) and Adiponectin(+).
#6 J Biol Chem. 2003 Jun 13;278(24):21344-51. Epub 2003 Apr 1.
Fig 5. Lane 2 is partially similar to lane3.
#7 Mol Cell Biol. 1996 Jun;16(6):3074-84.
Fig 7C. Lane a is similar to Lane b.
#8 J Biol Chem. 2001 Nov 2;276(44):41245-54. Epub 2001 Aug 31.
Fig 4G. PIPs are similar to those of Fig. 5d in another paper (J Clin Invest. 2001 Oct;108(7):1001-13. #9 in this list.) The date of submission of this paper is later than that of #9.
#9 J Clin Invest. 2001 Oct;108(7):1001-13.
Fig 6b. The CD36 band in the lane HF is similar to the UCP2 band in the lane HF+BADGE (horizontal flip). The CD36 band in the lane HF+BADGE is similar to the UCP2 band in the lane HF+HX531 (horizontal flip).
#10 Nat Genet. 2002 Feb;30(2):221-6. Epub 2002 Jan 30.
Fig 6. 28S in a (WAT) is similar to that of in d (BAT).
#11 Biochem Biophys Res Commun. 2004 Oct 8;323(1):242-8.
Fig 2A. The control lanes are similar to the salicylate lanes. Fig 3B. p-Akt in Lane 3 is similar to that in Lane 7. p-Akt in Lane 5 is similar to that in Lane 6. Akt in Lane 4 is similar to that in Lane 6. Fig 4. Lane 5 is similar to Lane 7 (horizontal flip).
#12 J Biol Chem. 2001 Jul 20;276(29):27519-26. Epub 2001 May 24.
Fig 6. E is similar to f. Fig 9. D is similar to e and f (enlarge).
#13 Exp Cell Res. 2002 Jan 1;272(1):23-31.
Fig7. Bone marrow cells of LZP is similar to those of CRP.
#14 Oncogene. 2002 Jan 24;21(5):844-8.
Fig 1b. These figures (HUVEC and ST2 cells) are similar to those of the COS7 cells in another paper (Fig. 6 in J Biol Chem. 2001 Jul 20;276(29):27519-26. #12 in this list.)
#15 Biochem Biophys Res Commun. 2002 Apr 26;293(1):332-7.
Fig 1. The mice of 2 weeks are similar to those of 3 weeks (vertically enlarge).
#16 J Virol. 1999 Nov;73(11):9237-46.
Fig 5B. Some bands seem to be pasted in the figures. For example, lane 3 in the left SeV/mSF figure.
#17 J Virol. 2000 Jun;74(12):5619-28.
Fig 2A. In the upper figure, 4C(-) 20 is simiar to 4C(-) 26. Fig 2B. GAPDHs of Wt 14, Wt 38, 4C(-) 14, and 4C(-) 20 are similar.
#18 J Virol. 2001 Apr;75(8):3802-10.
Fig 4C. Y1+ is similar to Y2+.
#19 J Virol. 2002 Jul;76(14):7114-24.
Fig 4B. Y2.5+ is similar to Y3+.
#20 J Virol. 2004 Jul;78(14):7443-54.
Fig 5. STAT2 of None is similar to that of Cm5.
#21 J Virol. 2007 Apr;81(7):3264-71. Epub 2007 Jan 10.
Fig 4. In the most upper figure, Sev Wt 0 is similar to Sev Wt 6 in both 2fTGH STAT1(+/+) cells and U3A STAT1(-/-) cells.
#22 Biochem Biophys Res Commun. 2002 Aug 9;296(1):194-200.
Fig 3A. Lane 1 is similar to Lane2 for GluSyn.
#23 Biochem Biophys Res Commun. 2001 Nov 30;289(2):531-8.
Fig 1 and Fig 2. 18S rRNA of Lane 2 (monocytes) in Fig 1 is similar to that of Lane 2 (alpha-GalCer-imDCs) in Fig 2.
#24 Circ Res. 2004 Jun 11;94(11):1492-9. Epub 2004 Apr 29.
Fig 2 and Fig 3. E1A in the lanes 1-2 of Fig 2A is similar to that in the lanes 2-3 of Fig 3C.
#25 J Biol Chem. 2002 Apr 5;277(14):12351-8. Epub 2002 Jan 22.
Fig 1B. D is similar to g. Fig 3B. The right part of Myc-MST1 WT is similar to that of Flag-MST1 444P.
#26 J Biol Chem. 1999 Apr 23;274(17):11995-2000.
Fig 4. EDTA is similar to Fuc.
#27 J Biol Chem. 2000 Jun 9;275(23):17233-6.
Fig 2B. Input of 0-45 is similar to that of 90-180. Fig 4. ECT2-N1(-) 45 is simialr to ECT2-N1(+) 45.
#28 J Biol Chem. 2002 Dec 27;277(52):50966-72. Epub 2002 Oct 21.
Fig 2B and Fig 4C. The actin in Fig 2B is similar to that of Fig 4C (horizontally flip.) Fig 4C and Fig 5D. The six COX bands in Fig 5D is similar to six bands of actin in Fig 4C.
#29 J Biol Chem. 2001 Mar 23;276(12):9460-7. Epub 2000 Dec 19.
Fig 1B. In the lower figure, RET-2B is similar to RET-2B/LAR.
#30 J Biol Chem. 1999 Dec 31;274(53):38251-9.
Fig 2A. 37 degrees Celsius is partially similar to 30 degrees Celsius.
#31 Nucleic Acids Res. 2000 Mar 15;28(6):1355-64.
Fig 7A. 18S rRNA of placenta is similar to that of mammary gland in another paper (Fig 2A in Mol Biol Cell. 1999 May;10(5):1637-52.)
#32 DNA Repair (Amst). 2007 Jun 1;6(6):760-9. Epub 2007 Feb 5.
Fig 5A. GAPDH of W in 5 weeks is similar to that of SP in 16 weeks.
#33 J Biol Chem. 2000 Aug 18;275(33):25146-54.
Fig 6D. pMAPK of S10A is similar to that of WT-DMSO (horizontally flip). You can pay attention to the noise of the rim.
#34 J Biol Chem. 2002 Apr 26;277(17):14355-8. Epub 2002 Mar 11.
Fig 1B. Tubulin in cytoplasm is similar to that in whole cell.
#35 EMBO J. 2002 Dec 2;21(23):6312-20.
Fig 2C. p47phox is similar to p67phox.
#36 J Biol Chem. 2003 Jul 4;278(27):25234-46. Epub 2003 Apr 25.
Fig 3A. The two lower left cells are similar between wt and P156Q.
#37 J Biol Chem. 2003 Jun 20;278(25):22908-17. Epub 2003 Apr 7.
Fig 2. MRP11-116/MRP2 is similar to MRP11-1480/MRP2.
#38 J Virol. 1999 Oct;73(10):7981-7.
Fig 1A. Lane 1 is similar to Lane 3 and 6. Lane 2 is similar to Lane 8. Lane 4 is similar to Lane 7.
#39 J Biol Chem. 2002 Jan 18;277(3):2132-7. Epub 2001 Oct 22.
Fig 2b. The FLAG band of GST-WT is similar to the GST band of WT-WT. Fig 3A. The left upper figure is similar to the left lower figure (horizontally flip).
#40 J Biol Chem. 2004 Jun 11;279(24):25474-82. Epub 2004 Mar 22.
Fig 5A. Lanes 8-9 are similar to lanes 12-13.
#41 Diabetes. 2003 Nov;52(11):2657-65.
Fig 3B. APS bands in GFP lanes seem to be pasted in. IR beta bands in GFP lanes are similar to those in APS(YF) lanes.
#42 J Biol Chem. 1999 Nov 5;274(45):32309-17.
Fig 4A. Lane 1 is similar to Lane 15 (horizontally flip). Lanes 12-13 are similar to Lane 16-17 (horizontally flip).
#43 J Biol Chem. 2000 Sep 1;275(35):26856-63.
Fig 9C. Mock-transfected cell (-) is somewhat similar to Mutant probe (-). Mock-transfected cell oligo TRE is somewhat similar to Mutant probe Ang II.
#44 J Biol Chem. 2000 Feb 11;275(6):4369-73.
Fig 3. GAPDHs of Time 4, 5, and 6 are similar in PAO+. Fig 4. iNOS mRNA of Lane +-+- is similar to that of Lane +–+.
#45 Hepatology. 2000 Nov;32(5):1037-44.
Fig 3. 3h None is similar to 5h Hypo.
#46 J Hepatol. 2004 Apr;40(4):616-23.
Fig 4A. Phospho-Akt of 2h(-) is similar to that of 2h(+).
#47 Am J Physiol Endocrinol Metab. 2005 May;288(5):E876-82. Epub 2004 Dec 21.
Fig 4A. 28S and 18S in lanes 1-6 are similar to those in another paper (Fig 1A in Biochem Biophys Res Commun. 2004 May 14;317(4):1075-9.)
Fig 5A. In the adiponectin bands, Lanes 1-4 are similar to lanes 12-15. Lanes 6-7 are similar to lanes 9-10.
#48 Biochem Biophys Res Commun. 2001 Apr 27;283(1):255-9.
Fig 2. V/Vsp in lanes 1-3 is similar to V/Vsp in lanes 7-9, STAT1 in lanes 10-12, and STAT1 in lanes 13-15. IRF9 in lanes 10-12 are similar to that in lanes 13-15.
#49 J Virol. 2002 Dec;76(24):12683-90.
Fig 8. In the Blot:FLAG, FL is similar to FLMT in the two middle lanes (vertically enlarge).
#50 J Biol Chem. 2003 Oct 24;278(43):41654-60. Epub 2003 Aug 13.
Fig 4. HSF-1s of OSC19-MP(mock) C and IFN in Fig 4A, from total cell lysate, are similar to those of OSC19 cytosol C and IFN in Fig 4C. HSF-1s of OSC19-MP(STAT-1) C and IFN in Fig 4A, from total cell lysate, are similar to those of OSC19-MP cytosol C and IFN in Fig 4D.
#51 J Med Virol. 2006 Apr;78(4):417-24.
Fig 2. GAPDH of RSV 5 is similar to that of inactivated SARS 1. GAPDH of FluAV 1 is similar to that of inactivated SARS 2. Fig 5. GAPDH of RSV 5 is similar to that of inactivated SARS 1. GAPDH of FluAV 1 is similar to that of inactivated SARS 2.
#52 Cancer Lett. 1999 Jul 19;142(1):23-30.
Fig 2B. hTERT of lane D is similar to that of lane F2.
#53 Leukemia. 2000 Jul;14(7):1260-5.
Fig 1b and 3b. hTERT of Fig 1b is similar to that of Fig 3b (horizontally flip).
#54 Biochem Biophys Res Commun. 2004 Apr 2;316(2):528-32.
Fig 1. 15 N is partially similar to 30 N.
#55 Cancer Lett. 2008 Mar 18;261(2):226-34. Epub 2007 Dec 21.
Fig 1. K562/hTERT 1 is similar to K562/hTERT 10.
#56 Cancer Res. 2006 Oct 15;66(20):9913-20.
Fig 4C. ADAM28 of Day3 is similar to that of Day 31 (vertically enlarge). Fig 5C. Lane 1 is similar to Lane 4.
#57 Biochem Biophys Res Commun. 2005 Mar 25;328(4):1232-43.
Fig 2. Two exon 3 figures are similar.
#58 Biochem Biophys Res Commun. 2000 Aug 11;274(3):603-8.
Fig 5. Two right lower bands in Fig 5A are similar to two left lower bands in Fig 5B.
#59 Biochem Biophys Res Commun. 2001 May 11;283(3):707-14.
Fig 3C. In the lower figure, the left four bands are similar to the middle four bands and the right four bands.
#60 Nat Cell Biol. 1999 Dec;1(8):479-85.
Fig 4a. Western(PS) of A246E is partially similar to that of delta E9.
#61 J Biol Chem. 2001 Jan 19;276(3):2108-14. Epub 2000 Oct 12.
Fig 1. Lanes N and H in Fig 1C are similar to Fig 1D.
#62 J Biol Chem. 2001 Nov 16;276(46):43446-54. Epub 2001 Sep 10.
Fig 1a and Fig 2a. Ten actin bands of Fig 1a are similar to those of Fig 2a.
#63 J Biol Chem. 2002 Apr 12;277(15):12931-6. Epub 2002 Jan 25.
Fig 3b. PY20 of Src is similar to Lysate of Src.
#64 Circulation. 2002 Jun 18;105(24):2893-8.
Fig 2. ERK of Fig 2C is similar to that of Fig 2D (horizontally flip, change brightness and contrast).
#65 J Biol Chem. 2002 Mar 8;277(10):8076-82. Epub 2002 Jan 4.
Fig 3. Cyclin D1 and actin of 694F are somewhat different with those of delta p85.
#66 J Biol Chem. 2005 Feb 11;280(6):4929-39. Epub 2004 Nov 24.
Fig 2A. Bcl-2 and actin of ED(-) are similar to those of ED(+).
#67 J Biol Chem. 2005 Apr 1;280(13):13163-70. Epub 2005 Jan 25.
Fig 5E. The left four lanes of CHO-B are similar to the right four lanes of CHO-B.
#68 J Biol Chem. 2001 Mar 30;276(13):9688-98. Epub 2000 Dec 14.
Fig 2C. Lane +— is similar to Lane +-+-. Fig 5B. Lane 1 is similar to Lane 3.
#69 J Biol Chem. 2001 Dec 14;276(50):47642-9. Epub 2001 Oct 10.
Fig 1B. Lane 2 is similar to Lane 4 (horizontally flip). Fig 5A. ERKs of lanes 1-4 are similar to those of lanes 5-8 (horizontally flip). Fig 7A. The upper two bands of pSG5 are similar to those of ER beta (horizontally flip).
#70 J Biol Chem. 2001 Feb 2;276(5):3459-67. Epub 2000 Oct 23.
Fig 7B. pSG5 is similar to ER beta (horizontally flip).
#71 J Biol Chem. 2002 Sep 6;277(36):33490-500. Epub 2002 Jun 26.
Fig 1B. ERKs of lanes 1-3 are similar to those of lanes 4-6. Fig 3A. Lanes 1-2 of Caov-3 are similar to lanes 3-4 of Caov-3 (horizontally flip). Fig 4A. Lanes 1-2 of BAD are similar to lanes 3-4 of BAD. Fig 6B. Phospho-Raf of Lane 2 is similar to that of Lane 5.
#72 Endocrinology. 2004 Jan;145(1):49-58. Epub 2003 Sep 18.
Fig 3B. Akt of lanes 1-2 is similar to that of lanes 3-4.
#73 Clin Cancer Res. 2004 Nov 15;10(22):7645-54.
Fig 1D. Akt of lanes 1-2 is similar to that of lanes 3-4.
#74 Endocrinology. 2004 Mar;145(3):1302-13. Epub 2003 Nov 26.
Fig 8B. Lane 1 of A2780 is similar to Lane 3 of Caov-3.
#75 J Biol Chem. 2004 May 28;279(22):23477-85. Epub 2004 Mar 16.
Fig 2A. Lanes 2-4 of actin are similar to lanes 6-8 of actin (horizontally flip).
#76 J Biol Chem. 2000 Nov 10;275(45):35051-62.
Fig 7C. Lanes i, j and k of abDbf4p are somewhat similar.
#77 Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13824-9.
Fig 4A. The most upper figure of insulin is similar to that of IGF-1.
#78 J Biol Chem. 1999 Mar 26;274(13):8531-8.
Fig 5C. In the Ad5IkB lane, Bcl-2 is similar to Bcl-x (horizontally flip and vertically enlarge). In the Ad5LacZ+TNF lane, Bcl-2 is partially similar to Bcl-x (vertically enlarge).
#79 FASEB J. 2001 May;15(7):1218-20.
Fig 1A. Akt of Cont is similar to that of VEGF.
#80 Nat Med. 2001 Mar;7(3):317-23.
Fig 2a. Actin of Astrocytes is similar to that of another paper (Fig 5C in J Biol Chem. 2001 Feb 2;276(5):3046-53. Epub 2000 Oct 20.)
#81 J Biol Chem. 2003 Jan 17;278(3):2058-65. Epub 2002 Nov 7.
Fig 2. wt is similar to delta alpha 1.
#82 J Biol Chem. 2001 Sep 7;276(36):34259-69. Epub 2001 Jul 2.
Fig 7. SRE-352 is similar to SRE-344 (vertically enlarge).
#83 J Biol Chem. 2005 Mar 18;280(11):10468-77. Epub 2005 Jan 7.
Fig 5B. IB:anti-V5 of STAM1 is similar to that of STAM1-mUIM.
#84 Cancer Res. 2007 Jun 1;67(11):5162-71.
Fig 2A. The well of WT is similar to that of control.
#85 Nature. 2008 Jul 17;454(7202):345-9.
Fig. 1c. The beta-actin of the lane 1 is similar to that of the lane 2.
Fig. 3b. The beta-actin of the lane 1 is similar to that of the lane 2.
Fig. 3e. The alpha-MHCs of the lanes 1, 4, and 6 and the GATA-4 of the
lane 5 are similar.
Fig. 3e. The GATA-4 of the lane 1 is similar to that of the lane 6.
Supplementary Fig. S3e. The bands of Nkx2.5 (-) and GATA4 BP4-2 are similar.
Supplementary Fig. S3f. The bands of Nkx2.5 (-) and beta-actin (-) are
similar (resized).
#86 J Biol Chem. 2004 Mar 19;279(12):11384-91.
Fig. 3. The MLC-2v is similar to the cardiac alpha-actin.
#87 Nat Med. 2009 Sep;15(9):1082-7.
The CT scan of WT (HS/HS) of Supplemental Fig. 2c is similar to those
of Pre operation of Supplemental Fig. 2d, G4 (HS/HS) of Supplemental
Fig. 2c, and G4 Trp53+/-(HS/HS) of Supplemental Fig. 2c.
The bars of G4 (HS/HS) and G4 Trp53+/- (HS/HS) for lean tissue/BW in
the right of Supplemental Fig. 2c are identical for mean and SEM.
#88 Nat Cell Biol. 2004 Jun;6(6):499-506.
The lower right band in the Fig. 2f is similar to the right band of Fig. 2h.
The upper band in the lane 3 in Fig. 2e is similar to the band in the
lane 2 in Fig. 3e.
#89 Biochem Biophys Res Commun. 2004 Sep 10;322(1):310-9.
Fig. 2b. The 28Ss of the lane 1-3 are similar to those of the lane 4-6.
#90 J Biol Chem. 1999 Mar 19;274(12):8231-9.
TTF1 of Fig. 2b is similar to NKE2 of Fig. 2c and CSX+ GATA-4+ of Fig. 7.
#91 Biochem Biophys Res Commun. 2000 Apr 21;270(3):1074-9.
Fig. 2a. GAPDH of WT At is similar to that of TG At. GAPDHs of WT Vt,
TG Vt, and TG Sk are similar.
#92 Circulation. 1999 Nov 16;100(20):2100-7.
Fig. 3b. DM 10 min in GST-c-Jun (1-79) is similar to DM 60 min
(horizontally flip.)
#93 Circulation. 2003 Dec 16;108(24):3024-30.
Fig. 5c. The upper band in Sham TG is similar to that of I/R TG.
#94 Circulation. 1998 May 19;97(19):1952-9.
Fig. 4. 18S of the right of Wild Type Banding is similar to that of
AT1a KO Banding.
18S of the left of Wild Type Sham is similar to that of Wild Type Banding.
18S of the right of Wild Type Sham is similar to those of the both
lanes of AT1a KO and that of the left lane of ShamAT1a KO Banding.
#95 Circ Res. 1999 Mar 5;84(4):458-66.
Fig. 2. The (-) in the upper MBP is similar to D.N.Cdc42.
#96 EMBO J. 2000;19(20):5533-41.
Fig. 3a. The upper band of +/- is similar to the band of -/-. Pay
attention to that the three “+” over the figure are not identical.
Fig. 7b. The eight error bars in the right panel are similar.
#97 Hypertension. 1998 Jan;31(1):50-6.
Fig. 5. The two lanes of S(SHRSP) in 24 wk are similar.
#98 Circ Res. 1998 Oct 5;83(7):752-60.
Fig. 1c. The 5 min is similar to the 3h (horizontally flip.)
#99 J Am Soc Nephrol. 2003 Mar;14(3):584-92.
Fig. 1c. The three lanes of ERK are similar to those of p38.
#100 Hypertens Res. 2005;28(5):447-55.
Fig. 2b. Con is similar to ALD/Spi.
#101 J Pharmacol Sci. 2005;98(4):372-9.
Fig. 4. BNP is similar to MCP-1.
#102 Circulation. 2003;107(10):1411-7.
Fig. 5. The lanes 1 and 2 of alpha-tubulin are similar to the lanes 3 and 4.
#103 Hypertension. 2006; 48:628-636.
All of the pictures and graphs of Fig. 1 HT are similar to those of
Fig. 5 HT-SD for.
All of the pictures and graphs of Fig. 2 HT is similar to Fig. 7 HT-SD
for except for the ICAM Western.
The ICAM Western in Fig. 2 NT is similar to that of Fig. 7 HT-SD
(horizontally flip.)
The actin of NT in Fig. 2 is similar to that of HT-Chimera in Fig. 7.
#104 Mol Pharmacol. 2005;67(5):1666-73.
Fig. 2A p-Src is similar to Fig. 2A Ser-STAT3 and Fig. 2C Tyr-STAT3.
The left 7 lanes of Fig. 2A Src are similar to the right 7 lanes of Fig. 2C Src.
The right 7 lanes of Fig. 2A ERK are similar to the left 7 lanes of Fig. 6A ERK.
The right 7 lanes of Fig. 2A Jak2 are similar to the left 7 lanes of
Fig. 2C Jak2.
Fig. 2C p-Pyk2 is similar to Fig. 2C Pyk2.
Fig. 2C Ser-STAT1 is similar to Fig. 2C Ser-STAT3.
The right 5 lanes of Fig. 2C Ser-STAT1 are similar to the right 5
lanes of Fig. 4A siRNA-MKP-1 MKP-1 (horizontally flip.)
The left 2 lanes of Fig. 4A siRNA-Lamin A/C alpha-SM actin are similar
to the left 2 lanes of Fig. 4A siRNA-MKP-1 alpha-SM actin.
The rightest lane of Fig. 4A siRNA-Lamin A/C alpha-SM actin is similar
to that of Fig. 4A siRNA-MKP-1 alpha-SM actin.
The left 7 lanes of Fig. 4B siRNA-Lamin A/C ERK are similar to the
right 7 lanes of Fig. 4B siRNA-MKP-1 ERK.
Fig. 6A Pyk2 is similar to Fig. 6C Pyk2.
Fig. 6A Src is similar to Fig. 6A Jak2.
Fig. 6A p-ERK is similar to Fig. 6C p-ERK.
The left 4 lanes of Fig. 6A p-Tyk2 are similar to the left 4 lanes of
Fig. 6A Tyr-STAT1 and the left 4 lanes of Fig. 6C Tyr-STAT3.
The right 4 lanes of Fig. 6A Tyr-STAT1 are similar to the right 4
lanes of Fig. 6A STAT3.
The left 7 lanes of Fig. 6A Tyr-STAT3 are similar to the left 7 lanes
of Fig. 6C Tyr-STAT1.
The right 4 lanes of Fig. 6A Tyr-STAT3 are similar to the left 4 lanes
of Fig. 6A STAT3 (horizontally flip.)
Fig. 6C p-Src is similar to Fig. 6C p-Tyk2 and Fig. 6C Ser-STAT1.
Fig. 6C Src is similar to Fig. 6C Tyk2 and Fig. 6C STAT1.
Fig. 2C Src is similar to Fig. 2C STAT3 (horizontally flip.)
#105 Arterioscler Thromb Vasc. 2012 Jun;32(6):1453-9.
Fig. 5. oxLDL (-) of A is similar to oxLDL (50ug/ml) of B.
#106 Nature. 1998 Jul 2;394(6688):92-6.
Fig. 2b. -TGF-beta, M-2[Evi-1(-)] is similar to +TGF-beta, E-5[Evi-1(+)].
#107 Circulation. 2006 Aug 29;114(9):953-60.
Supplemental Fig. IV. Something wrong in DKO+Vehicle of ICAM-1.
#108 Circulation. 2002 Sep 10;106(11):1397-402.
Fig. 3. 2-c is similar to 3-c (rotate.) The experimental condition for
3-c is different between the main text and the figure legend.
#109 Circulation. 2002 Mar 12;105(10):1240-6.
The lanes 1-3 in Skeletal alpha-actin in Fig. 3a is similar to the
lanes 2-4 of Skeletal alpha-actin in Fig. 1B.
#110 Arthritis Rheum. 2000 Feb;43(2):259-69.
There are a lot of duplications in the actin of Fig. 3B.
#111 J Clin Invest. 1999; 104(2):137-146
Fig. 2a. Src. Control is similar to AxCATcsk(moi) 100 (horizontally flip.)
Fig. 4b. IL-6. Control is similar to AxCASLacZ. Actin. Control is
partially similar to AxCATcsk(moi) 100.
Fig. 6d. Csk. Ax1w1 is similar to AxCATcsk Day42.
Relator Joseph M. Thomas brings this action on behalf of the United States of America under the False Claims Act (“FCA”), 31 U.S.C.§§3729-33, against Defendants Duke University, Duke University Health System, Inc,(“DUHS”), William M.Foster, Ph.D. (“Foster”), and Erin N. Potts-Kant (“Potts-Kant”) to recover losses sustained by the Public Health Service (“PHS”), the National Institutes of Health (“NIH”), the Environmental Protection Agency (“EPA”), and other Federal agencies responsible for administrering scientific aresearch grants. (Civil Action No.4:13-cv-00017)
WHEREFORE, Relator, on be half of the United Sates, prays that judgment be entered in their favor and against Defendants as follows: 1. That Defendants pay the United States triple the amount of its damages to be determined, plus civil penalties of up to $11,000 for each false claim, statement, or record; (Civil Action No.4:13-cv-00017)
”And last month, a U.S. district court unsealed a whistleblower lawsuit filed by a former colleague of Potts-Kant. It accuses the researcher, her former supervisor, and the university of including fraudulent data in applications and reports involving more than 60 grants worth some $200 million. If successful, the suit—brought under the federal False Claims Act (FCA)—could force Duke to return to the government up to three times the amount of any ill-gotten funds, and produce a multimillion-dollar payout to the whistleblower.” (Whistleblower sues Duke, claims doctored data helped win $200 million in grants. Science News By Alison McCook, Retraction WatchSep. 1, 2016 , 2:00 PM)
Duke Is Wake-up Call for Research Compliance (bna.com April 4, 2018) The case is in the discovery phase in preparation for a possible trial, according to filings tracked by Bloomberg Law.
Judge Refuses to Dismiss Whistleblower’s False Research Data Suit Against Duke University and Two Faculty Members (The Health Law Firm Thursday, May 11, 2017) On April 27, 2017, a federal judge in North Carolina refused to dismiss a False Claims Act (FCA) lawsuit against Duke University and some of its faculty.
Survival of Duke Research Whistle-Blower Case Could Mean More Suits (bna.com May 2, 2017) Duke University and two Duke researchers will have to face claims they defrauded the government on NIH research grants ( United States ex rel. Thomas v. Duke Univ. , M.D.N.C., No. 1:17-cv-00276-CCE-JLW, order 4/25/17 ). Former Duke University employee Joseph M. Thomas sufficiently stated claims against Duke and the researchers, Judge Catherine C. Eagles of the U.S. District Court for the Middle District of North Carolina said in an April 25 order refusing the defendants’ bid to dismiss the suit.
Joseph Thomas vs. Duke University: Lawsuit Update 4.28.17 (Scribd)
False Claims Act (Wikipedia): The False Claims Act (31 U.S.C. §§ 3729–3733, also called the “Lincoln Law”) is an American federal law that imposes liability on persons and companies (typically federal contractors) who defraud governmental programs. It is the federal Government’s primary litigation tool in combating fraud against the Government.[1] The law includes a qui tam provision that allows people who are not affiliated with the government, called “relators” under the law, to file actions on behalf of the government (informally called “whistleblowing” especially when the relator is employed by the organization accused in the suit). Persons filing under the Act stand to receive a portion (usually about 15–25 percent) of any recovered damages. As of 2012, over 70 percent of all federal Government FCA actions were initiated by whistleblowers.
Aizawa S. Results of an attempt to reproduce the STAP phenomenon [version 1; referees: 1 approved]. F1000Research 2016, 5:1056 (doi: 10.12688/f1000research.8731.1)
Hitoshi Niwa. Investigation of the cellular reprogramming phenomenon referred to as stimulus-triggered acquisition of pluripotency (STAP). Scientific Reports 6, Article number: 28003 (2016). doi:10.1038/srep28003. Reprogramming Totipotent stem cells. Received:06 October 2015. Accepted:26 April 2016, Published online:13 June 2016
If you fail to reproduce another scientist’s results, this journal wants to know (sciencemag.org/news/ By Jocelyn KaiserFeb. 4, 2016 , 4:00 AM):”The contradictory results—along with successful confirmations—will be published by F1000Research, an open-access, online-only publisher. Its new “Preclinical Reproducibility and Robustness channel,” launched today, will allow both companies and academic scientists to share their replications so that others will be less likely to waste time following up on flawed findings, says Sasha Kamb, senior vice president for research at Amgen in Thousand Oaks, California.”