「 ノーベル賞 」 一覧

2017年度ノーベル化学賞はクライオ電顕 Cryo-EMの開発に貢献したジャック・デュボシェ博士(75)、ヨアヒム・フランク博士(77)、リチャード・ヘンダーソン博士(72)に

  2017/10/05    ノーベル賞

2017年度ノーベル化学賞は、クライオ電子顕微鏡法の開発に貢献したジャック・デュボシェ(Jacques Dubochet)博士(75)、ヨアヒム・フランク(Joachim Frank)博士(77)、リチャード・ヘンダーソン博士(Richard Henderson)(72)に贈られました。 クライオ電子顕微鏡法の開発の歴史や3人のノーベル賞受賞者の貢献が解説された、ノーベル財団が公表した文書。 Scientific Background on the Nobel Prize in Chemistry 2017 THE DEVELOPMENT OF CRYO-ELECTRON MICROSCOPY (PDF nobelprize.org)   クライオ電顕の現状を語るリチャード・ヘンダーソン博士。 Single-Particle Electron Microscopy – Richard Henderson (14分31秒) 5:52- 単粒子クライオ電子顕微鏡法は非常に一般的になってきています。今まで全く何も知らなかった人々にも広まっています。いまどきの状況はこんな感じです。誰かがこう言います。「自分はこのたんぱく質の構造を決めようとして10年間も試みてきたんだ。精製して、分析して、結晶化しようとして努力したが実らなかった。自分の場合、結晶化してくれないのか、あるいは、結晶化しても整列が不十分で構造が決められない。」それから、こう言うのです。「クライオ電子顕微鏡を試してみるべきかもしれないな。」 そう言って、非常に微量の試料、わずか数滴をグリッドに載せ、デュボシェ法によりブロットし、急速に凍結し、電子顕微鏡にセットし、画像を取得します。いまではそれは、新しい検出器でデジタル化されています。それから構造を計算します。そうすると数日以内にはもう構造が決まってしまうのです。他の方法を試して10年間を費やした、たんぱく質の構造がです。 (上の動画のトランスクリプト http://serious-science.org/single-particle-electron-microscopy-8637)   ノーベル賞受賞直後にインタビューに答えるヨアヒム・フランク博士。 2017 Nobel Prize in Chemistry Awarded to …

2016年ノーベル化学賞は分子マシンの合成に

  2016/10/05    ノーベル賞

2016年10月5日に、2016年度のノーベル化学賞受賞者が発表されました。受賞したのは分子マシンを設計・合成したジャン=ピエール・ソヴァージュ(Jean-Pierre Sauvage)氏、ジェームス・フレーザー・ストッダート(Sir J. Fraser Stoddart)氏、バーナード・フェリンガ(Bernard L. Feringa)氏の3人です。 1983年にソヴァージュ氏がリングがチェーンのようにつながった分子カテナン(catenane)の合成に成功。 ソヴァージュ氏のインタビュー。 1991年にストッダート氏が、リングが車軸の上を動くような分子「rotaxane 」の合成に成功。これをもとに分子リフト、分子マッスル、分子コンピュータチップなどを合成。 ストッダート氏のレクチャー。 1999年にはフェリンガ氏が分子モーターを合成しました。また、分子で「自動車」も作製しています。下の動画は、Supplementary information from the paper “Electrically driven directional motion of a four-wheeled molecule on a metal surface,” authored by Tibor Kudernac, Nopporn Ruangsupapichat, Manfred Parschau, Beatriz Maciá, Nathalie …

no image

2016年ノーベル物理学賞はデビッド・J・サウレス (David J. Thouless)氏、F・ダンカン・M・ハルデン(F. Duncan M. Haldane)氏、J・マイケル・コステリッツ(J. Michael Kosterlitz)の3氏に

  2016/10/04    ノーベル賞

2016年10月4日に2016年度のノーベル物理学賞授賞者が発表されました。授与されるのは、物性理論の研究者デビッド・J・サウレス (David J. Thouless)氏、F・ダンカン・M・ハルデン(F. Duncan M. Haldane)氏、J・マイケル・コステリッツ(J. Michael Kosterlitz)氏の3名です。 参考 Press Release: The Nobel Prize in Physics 2016 (nobbelprize.org 4 October 2016) The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2016 with one …

2016年ノーベル医学生理学賞はオートファジー(自食作用)の分子メカニズム解明に貢献した大隅良典氏が単独受賞

  2016/10/03    ノーベル賞

2016年10月3日11:30(スウェーデン現地時間)(日本時間は同日18:30)に、2016年のノーベル医学生理学賞がオートファジーの分子メカニズム解明に貢献した大隅良典氏に授与されることが発表されました。 細胞が自分で自分のタンパク質を分解してしまう「オートファジー」と呼ばれる現象がどのような仕組みで生じるのかは長年の謎でしたが、大隅良典氏はまずオートファジーという現象が酵母においても存在することを示し、次に酵母を用いた遺伝学を駆使することでオートファジーに関与する多数の遺伝子を一気に同定し、その後はそれらの遺伝子産物がどのように協同してオートファジーを生じるのか、その分子メカニズムを明らかにしてきました。 ノーベル生理学・医学賞を受賞した大隅良典氏が東工大で会見(2016年10月3日) THE PAGE (大隅氏の言葉 3:25~) … ノーベル賞、わたしは少年時代にはまさしく夢だったように記憶しておりますが、実際に研究生活に入ってからは、ノーベル賞は全くわたしの意識の外にありました。わたしは自分の私的な興味に基いて、生命の基本単位である細胞がいかに動的な存在であるかということに興味を持って、酵母という小さい細胞に長年、いくつかの問いをしてまいりました。 わたしは人がやらないことをやろうという思いから、酵母の液胞の研究を始めました。1988年、今から27年半ほど前に、液胞が実際に細胞の中での分解に果たす役割というものに興味を持ちまして、そういう研究を東大の教養学部の私自身たった一人の研究室に移ったときに始める機会になり、それ以降28年にわたってオートファジーという研究に携わってまいりました。 オートファジーという言葉は耳慣れない言葉かと思いますが、酵母が実際に飢餓に陥ると自分自身のタンパク質を分解を始めます。その現象を私は光学顕微鏡で捉えることができたということが、私の研究の出発点になりました。 馬場美鈴さんと電子顕微鏡でその過程を解析することで実はそれがそれまで動物細胞で知られていたオートファジーという現象と全く同一の過程だということがわかりました。 酵母は遺伝学的な解析というのにとっても優れた生物なので早速私たちはオートファジーに必須の遺伝子を探すことを始めました。幸い、これも大学院生としてJOINした塚田美樹さんという人の努力で、割りに短時間の間でたくさんのオートファジーに必須の遺伝子をとることができました。それらの遺伝子は実はオートファジーの膜現象の基本的な分子装置であるということがその後のわたしたちの解析でわかることになりました。 幸いこれらの遺伝子は酵母のみならず人とか植物細胞にも広く保存されているということがわかりました。こうしてオートファジーの遺伝子が同定されたということで、これまでのオートファジーの研究は、質が大きく転換をすることになりました。その後はさまざまな細胞で、オートファジーがどのような機能をしているかということが世界じゅうのたくさんの研究者で解析をされて今日に至っております。 私はずっと酵母という材料でオートファジーの研究をしてまいりました。酵母の研究がですね、そのような基礎的な研究が、今日のオートファジーの大きなきっかけになったということであれば、私は基礎生物学者としてこの上もない幸せなことだと思っております。 もちろん現代生物学は一人でやりおおせるものではありません。わたしもこの間、27年間わたしの研究室で研究にたゆまぬ努力をしてくれた大学院生、ポスドク、それからスタッフの方々の努力の賜物だと思っております。 それから、酵母から動物細胞のオートファジーへと展開してくれました、水島昇、吉森保、両氏がいま現在動物細胞におけるオートファジーの、世界を牽引している二人とも、私は今日の栄誉を分かち合いたいと思っております。 今後、オートファジーって言う、タンパク質の分解っていうのは細胞の持っているものすごく基本的な性質なので、今後益々いろいろな現象に関わってくるということが明らかになってくれるということを、私も期待をしております。 ひとつだけ強調しておきたいことは、私がこの研究を始めたときに、オートファジーが必ずがんにつながるとか、人間の寿命の問題につながるということを確信して始めたわけではありません。基礎的な研究っていうのがそういう風に展開してくもんだっていうことを是非理解をしていただければと思います。基礎科学の重要性をもう一度強調しておきたいと思います。 これまで私の研究の場を与えていただきました東京大学教養学部、理学部、基礎生物学研究所、それから東京工業大学には厚く御礼申し上げます。(-10:09) … 東京大学教養学部生物学教室(現 生物部会)で初めて独立してラボを持った頃の2つの論文が、その後の全ての研究の流れを作り出しています。まず、遺伝学的手法が使える酵母においてもオートファジー現象が存在することを見出したのが原点です。 当時、液胞の内部で、何をどのように分解しているのかについては全くの謎だった。大隅は、まずは液胞内で起こっていることを何とか顕微鏡で観察できないかと考えた。そして、あるとき、1つのアイデアが浮かんだ。酵母は栄養がなくなり飢餓状態に陥ると、細胞内部を作り変えて胞子を形成し、飢餓を乗り切る。仮に液胞が分解機能を持つとすれば、その機能が最も活発に働くのは、胞子を形成する飢餓状態のときなのではないだろうか。その状態で液胞内での分解機能を止めることができれば、何が分解されようとしているのかがわかるはずだ―。そこで、さっそく液胞内の分解酵素が欠損している酵母の変異体を取り寄せ、飢餓状態の液胞内で何が起こるかを電子顕微鏡で観察し始めた。…「数時間飢餓状態にした酵母を観察したところ、液胞内にたくさんの小さな粒々が蓄積して、それらが激しく動き回っているのが確認されました。その粒々は液胞の周囲の細胞質の成分の一部を膜構造が包み込み、それが液胞内に取り込まれて、ブラウン運動をしている様子だったのです。酵母にはタンパク質がほとんどなく粘性が低いため、ブラウン運動が起っていたのです。大変感動し、何時間もその様子を見続けましたね」と語る大隅。液胞のオートファジー機能の過程を世界で初めて肉眼で捉えた瞬間だった。(顕微鏡観察がすべての出発点  顔 東工大の研究者たち Vol.1 大隅良典) そして、オートファジー研究の大きな潮流の源となったのは、大隅博士が修士課程の学生と二人で行った研究です。まさに宝の山を掘り起こした仕事でした。 大隅博士らは、まだ他にもオートファジーに必要な遺伝子があると考えた。しかし、五〇〇〇個の変異体を検査してオートファジーに異常があったのはわずかにapg1変異体だけである。そのまま続けていては途方もない仕事になる。ここで大隅博士らは巧妙な作戦を立てた。オートファジーができないと死にやすくなるという性質に注目したのである。いきなり顕微鏡で検査をするのではなく、まず飢餓で死にやすい細胞を選ぶことにした。…その結果、最終的にapg1を含めて十四種類のオートファジー不能変異体が同定された。この膨大で精緻な研究のほとんどは、大隅博士と当時修士大学院生であった塚田美鈴氏のわずか二名によって行われた。この記念すべき研究成果は一九九三年に「FEBS Letters」という雑誌に小さな論文として発表された。…しかし、この十四種類の変異体とそれにもとづく遺伝子の発見こそが、オートファジー研究の歴史を大きく変える事件だったのである。今ではこの論文はオートファジー研究史上最も価値ある論文のひとつとして世界中が認めている。(細胞が自分を食べるオートファジーの謎 水島昇 著 PHP研究所) Key publications (Yoshinori Ohsumi The Nobel Prize in Physiology …

no image

2008年ノーベル化学賞のロジャー・ツェン(Roger Y. Tsien)博士が死去

  2016/09/01    ノーベル賞

2008年ノーベル化学賞受賞のカリフォルニア大学サンディエゴ校教授ロジャー・ツェン博士(64)が、訪れていたオレゴン州ユージンで2013年8月24日に亡くなられました。 UC San Diego Chancellor Pradeep Khosla said that Tsien apparently died while on a bike trail, the San Diego Union-Tribune reported (http://bit.ly/2bSZn8Z), but the cause of death had not been determined.(abcnews.go.com) 参考 UCSD Nobel laureate Roger Tsien dies (The …

大村智・北里大特別栄誉教授が ストックホルムでノーベル賞受賞記念講演

  2015/12/08    ノーベル賞

2015年12月7日、大村智・北里大特別栄誉教授がストックホルムでノーベル賞受賞記念講演を行いました。 2015 Nobel Lectures in Physiology or Medicine 参考 大村さんの講演要旨=ノーベル賞 (時事ドットコム 2015/12/08)

no image

梶田隆章・東京大宇宙線研究所長がノーベル賞受賞記念講演

  2015/12/08    ノーベル賞

2015年ノーベル物理学賞を受賞する梶田隆章・東大宇宙線研究所長(56)は、12月8日にストックホルム大で受賞記念講演を行いました。 2015 Nobel Lectures in Physics (14:20-開始、19:24-二人の受賞者の紹介、22:25-梶田隆章教授の講演、53:51-Arthur B McDonald教授の講演) 参考 “Takaaki Kajita – Facts”. Nobelprize.org. Nobel Media AB 2014. Web. 8 Dec 2015. 梶田隆章さんの記念講演要旨 ノーベル物理学賞受賞 (西日本新聞 2015年12月08日) 梶田さん「宇宙解明手掛かりに」 – ノーベル賞記念講演 (マイナビニュース・共同通信 2015/12/08)

no image

2015年ノーベル物理学賞は東京大宇宙線研究所の梶田隆章教授(56)ら二人に

  2015/10/06    ノーベル賞

2015年ノーベル物理学賞は東京大宇宙線研究所の梶田隆章教授(56)とカナダ・クイーンズ大のアーサー・マクドナルド名誉教授(72)に授与されました。 「ニュートリノ振動」をとらえる 質量発見までの長い道のり 梶田隆章 (PDF 18ページ 一般向け解説記事) ニュートリノで探る宇宙2 梶田隆章 全学自由ゼミナール2006年12月12日 (一般大学生向け PDF 43ページ) 参考 梶田隆章・東大教授にノーベル物理学賞 素粒子ニュートリノの質量発見(産経新聞 10月6日) 梶田 隆章 (Takaaki Kajita) 東京大学宇宙線研究所宇宙ニュートリノ観測情報融合センター

no image

2015年医学生理学賞は北里大学の大村智氏ら3人に

  2015/10/05    ノーベル賞

Announcement of the Nobel Prize in Physiology or Medicine 2015 大村智博士の業績に関するレビューアーティクル。 Ivermectin, ‘Wonder drug’ from Japan: the human use perspective Andy CRUMP and Satoshi ŌMURA Proc Jpn Acad Ser B Phys Biol Sci. 2011 Feb 10; 87(2): 13–28. Abstract Discovered in the …

no image

南部 陽一郎(1921-2015)

  2015/07/19    ノーベル賞

ノーベル物理学賞の南部陽一郎氏(94)が死去(15/07/17) 南部陽一郎さん訃報に悼む声相次ぐ 南部陽一郎の名を抜きにしては、現代の素粒子理論のどの面も語れません。クォークが多次元の「ひも」で結ばれているという「ひも理論」も、湯川秀樹の中間子理論を大きく進化させた「色の量子力学」も、素粒子の質量を決める理論である「ヒッグス機構」も、そのどれを取っても最初の発端は南部のアイデアです。現在の素粒子論では陽子も中性子も素粒子ではなく、その三分の一のかけらに相当するクォークが素粒子であることが確定していますが、このクォークを考え る決定的一歩になった「西島ゲルマンの公式」も、実は南部が西島和彦に与えたヒントが基礎になっていると言われています。つまり、南部は一人で「現代素粒子理論」の骨組みをつくったような人です。(どこがスゴイか 南部陽一郎 特別寄稿 原子力文化 2008 11月号) 南部の思想は現代の素粒子論の中にまさに空気のように満ち溢れており,小林と益川の理論は日米の加速器実験によって見事に実証された.(素粒子物理学の50年 「対称性の破れ」を中心に 科学 Jan.2009) 大阪大学未来トーク 04 「物理学の周辺」南部陽一郎(2013.7.16) (1:05:06) 南部陽一郎氏インタビュー(福井新聞 2008年10月)(4:38) 参考 Yoichiro Nambu (Google Scholar) Nobel Lecture by Yoichiro Nambu (32 minutes):”The Nobel Lecture of Yoichiro Nambu was presented by Giovanni Jona-Lasinio. …